Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Steroids ; 205: 109392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452910

RESUMEN

We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12ß-hydroxyandrostenedione 1b and 1ß-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.


Asunto(s)
Antineoplásicos , Penicillium , Antineoplásicos/metabolismo , Cladosporium/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Penicillium/metabolismo , Progesterona/metabolismo
2.
Appl Environ Microbiol ; 90(4): e0147723, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445906

RESUMEN

Plastic degradation by biological systems emerges as a prospective avenue for addressing the pressing global concern of plastic waste accumulation. The intricate chemical compositions and diverse structural facets inherent to polyurethanes (PU) substantially increase the complexity associated with PU waste management. Despite the extensive research endeavors spanning over decades, most known enzymes exhibit a propensity for hydrolyzing waterborne PU dispersion (i.e., the commercial Impranil DLN-SD), with only a limited capacity for the degradation of bulky PU materials. Here, we report a novel cutinase (CpCut1) derived from Cladosporium sp. P7, which demonstrates remarkable efficiency in the degrading of various polyester-PU materials. After 12-h incubation at 55°C, CpCut1 was capable of degrading 40.5% and 20.6% of thermoplastic PU film and post-consumer foam, respectively, while achieving complete depolymerization of Impranil DLN-SD. Further analysis of the degradation intermediates suggested that the activity of CpCut1 primarily targeted the ester bonds within the PU soft segments. The versatile performance of CpCut1 against a spectrum of polyester-PU materials positions it as a promising candidate for the bio-recycling of waste plastics.IMPORTANCEPolyurethane (PU) has a complex chemical composition that frequently incorporates a variety of additives, which poses significant obstacles to biodegradability and recyclability. Recent advances have unveiled microbial degradation and enzymatic depolymerization as promising waste PU disposal strategies. In this study, we identified a gene encoding a cutinase from the PU-degrading fungus Cladosporium sp. P7, which allowed the expression, purification, and characterization of the recombinant enzyme CpCut1. Furthermore, this study identified the products derived from the CpCut1 catalyzed PU degradation and proposed its underlying mechanism. These findings highlight the potential of this newly discovered fungal cutinase as a remarkably efficient tool in the degradation of PU materials.


Asunto(s)
Hidrolasas de Éster Carboxílico , Cladosporium , Poliuretanos , Poliuretanos/química , Poliuretanos/metabolismo , Cladosporium/genética , Cladosporium/metabolismo , Estudios Prospectivos , Biodegradación Ambiental , Poliésteres/metabolismo , Plásticos
3.
BMC Biol ; 22(1): 25, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281938

RESUMEN

BACKGROUND: Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS: Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS: Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.


Asunto(s)
Ascomicetos , Solanum lycopersicum , Solanum lycopersicum/genética , Elementos Transponibles de ADN/genética , Genes Fúngicos , Cladosporium/genética , Cladosporium/metabolismo , Plantas/metabolismo , Cromosomas/metabolismo , Nucleótidos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo
4.
J Hazard Mater ; 448: 130776, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36706489

RESUMEN

Microorganisms capable of decomposing polyurethane (PU) and other plastics have the potential to be used in bio-recycling processes. In this study, 20 PU-degrading strains were isolated, including 11 bacteria and 9 fungi, using a synthesized poly(1,4-butylene adipate)-based PU (PBA-PU) as the screening substrate. Three PU substrates with increasing structure complexities were used for a thorough evaluation of microbial degradation capacity: Impranil® DLN-SD, PBA-PU film and PU foam waste. After 4 days, the best fungal PBA-PU degrader, Cladosporium sp. P7, could degrade 94.5% of Impranil® DLN-SD. After 28 days of cultivation, 32.42% and 43.91% of solid PBA-PU film was converted into soluble small molecules when used as the sole carbon source or in a medium with other co-carbon sources, respectively. Accordingly, the weight loss of PU foam waste after 15 days was 15.3% for the sole carbon condition and 83.83% for the co-carbon conditions. Furthermore, PBA-PU was used for metabolic pathway analysis because of its known composition and chemical structure. Six metabolites were identified during the degradation process of PBA-PU, including adipic acid (AA), 1,4-butanediol (BDO), and 4,4'-methylenedianiline (MDA), which can also be used as the sole carbon source to grow the fungal strain P7, resulting in the discovery of two MDA metabolites during the cultivation processes. Based on the presence of these eight metabolites, we hypothesized that PBA-PU is first depolymerized by the fungal strain P7 via ester and urethane bond hydrolysis, followed by intracellular metabolism and mineralization of the three monomers to CO2 and H2O.


Asunto(s)
Cladosporium , Poliuretanos , Poliuretanos/química , Cladosporium/metabolismo , Poliésteres , Biodegradación Ambiental , Hongos/metabolismo , Redes y Vías Metabólicas , Carbono/metabolismo
5.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36478021

RESUMEN

Polyethylene (PE) is high molecular weight synthetic polymer, very hydrofobic and hardly biodegradable. To increase polyethylene bio-degradability it is very important to find microorganisms that improve the PE hydrophilic level and/or reduce the length of its polymeric chain by oxidation. In this study, we isolated Cladosporium halotolerans, a fungal species, from the gastric system of Galleria mellonella larvae. Here, we show that C. halotolerans grows in the presence of PE polymer, it is able to interact with plastic material through its hyphae and secretes enzymes involved in PE degradation.


Asunto(s)
Plásticos , Polietileno , Animales , Polietileno/metabolismo , Cladosporium/metabolismo , Polímeros , Biodegradación Ambiental
6.
J Hazard Mater ; 442: 130106, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209612

RESUMEN

Fungus Cladosporium sp. strain F1 showed highly effective biosorption capacity to lead phosphate mineral and perovskite solar cells lead iodide compared to other fungi Aspergillus niger VKMF-1119 and Mucor ramannianus R-56. Scanning electron microscopy and transmission electron microscopy analyses shows that Cladosporium sp. strain F1, which previously showed high biosorption capacity to uranium phosphate nanorods and nanoplates, can accumulate lead phosphate mineral and lead iodide on the fungal hyphae surface in large amounts under a wide range of pH conditions, while A. niger VKMF-1119 and M. ramannianus R-56 adsorbed small amounts of minerals. After biosorption of lead iodide minerals on Cladosporium sp. strain F1, aqueous dimethyl sulfoxide (50%) at pH 2 (70 °C) released the mineral more than 99%. Based on the fungal surface analyses, hydrophobic properties on the surfaces of Cladosporium sp. strain F1 could affect the higher biosorption capacity of strain F1 to lead phosphate mineral and lead iodide as compared to other tested fungi. Cladosporium sp. strain F1 may be the novel biosorbents to remediate the phosphate rich environment and to recover lead from perovskite solar cells lead iodide.


Asunto(s)
Cladosporium , Uranio , Cladosporium/metabolismo , Adsorción , Fosfatos/metabolismo , Concentración de Iones de Hidrógeno , Biomasa , Yoduros , Uranio/metabolismo , Dimetilsulfóxido , Plomo/metabolismo , Aspergillus niger , Minerales/metabolismo
7.
J Appl Microbiol ; 133(6): 3296-3306, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36106420

RESUMEN

AIM: Biodegradation is a cost-effective and eco-friendly treatment for oil-contaminated materials using microorganisms. Bacteria and fungi can degrade petroleum by using it as an energy source and this may provide an enormous scope to remediate soils contaminated with petroleum and oil. This study aimed to assess the biodegradation of petroleum hydrocarbons by certain Cladosporium species. METHODS AND RESULTS: By using traditional and spectroscopic assessment analysis, qualitative screening was carried out using Cladosporium spores isolated from air and cultured on mineral salt medium supplemented with petroleum hydrocarbon as the sole carbon source, followed by quantitative assessment using gas chromatography-mass spectroscopy. Nineteen Cladosporium strains from a total of 212 isolates exhibited remarkable capability to degrade petroleum hydrocarbon, representing four species (C. herbarum, C. macrocarpum, C. sphaerospermum, and C. cladosporioides). The results were expressed in terms of biodegradation percentage and optical density of hydrocarbon using a standard calibration curve. The highest reduction of petroleum hydrocarbon was observed with five Cladosporium strains belonging to two species (C. sphaerospermum and C. cladosporioides). CONCLUSION: This study succeeded in isolating several Cladosporium strains (from the air) with a high ability to degrade crude oil that can be used as biological agents to control petroleum pollution in soils and seas. The addition of a surfactant (Tween 80) enhanced the degradation of crude oil reaching a final concentration of 0.4%. Based on these results, the present study could indicate some unique prospects in the field of bioremediation and biodegradation of petroleum-contaminated soil. SIGNIFICANCE AND IMPACT OF STUDY: This study gives unique prospects in the field of bioremediation and biodegradation of petroleum-contaminated soil.


Asunto(s)
Petróleo , Contaminantes del Suelo , Petróleo/metabolismo , Biodegradación Ambiental , Cladosporium/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Suelo/química
8.
Microb Genom ; 8(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35471194

RESUMEN

Cladosporium fulvum is a fungal pathogen that causes leaf mould of tomato. The reference genome of this pathogen was released in 2012 but its high repetitive DNA content prevented a contiguous assembly and further prohibited the analysis of its genome architecture. In this study, we combined third generation sequencing technology with the Hi-C chromatin conformation capture technique, to produce a high-quality and near complete genome assembly and gene annotation of a Race 5 isolate of C. fulvum. The resulting genome assembly contained 67.17 Mb organized into 14 chromosomes (Chr1-to-Chr14), all of which were assembled telomere-to-telomere. The smallest of the chromosomes, Chr14, is only 460 kb in size and contains 25 genes that all encode hypothetical proteins. Notably, PCR assays revealed that Chr14 was absent in 19 out of 24 isolates of a world-wide collection of C. fulvum, indicating that Chr14 is dispensable. Thus, C. fulvum is currently the second species of Capnodiales shown to harbour dispensable chromosomes. The genome of C. fulvum Race 5 is 49.7 % repetitive and contains 14 690 predicted genes with an estimated completeness of 98.9%, currently one of the highest among the Capnodiales. Genome structure analysis revealed a compartmentalized architecture composed of gene-dense and repeat-poor regions interspersed with gene-sparse and repeat-rich regions. Nearly 39.2 % of the C. fulvum Race 5 genome is affected by Repeat-Induced Point (RIP) mutations and evidence of RIP leakage toward non-repetitive regions was observed in all chromosomes, indicating the RIP plays an important role in the evolution of this pathogen. Finally, 345 genes encoding candidate effectors were identified in C. fulvum Race 5, with a significant enrichment of their location in gene-sparse regions, in accordance with the 'two-speed genome' model of evolution. Overall, the new reference genome of C. fulvum presents several notable features and is a valuable resource for studies in plant pathogens.


Asunto(s)
Ascomicetos , Solanum lycopersicum , Ascomicetos/genética , Cromosomas , Cladosporium/genética , Cladosporium/metabolismo , Solanum lycopersicum/microbiología
9.
Molecules ; 26(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203561

RESUMEN

Fungi are renowned as one of the most fruitful sources of chemodiversity and for their ubiquitous occurrence. Among the many taxonomic groupings considered for the implications deriving from their biosynthetic aptitudes, the genus Cladosporium stands out as one of the most common in indoor environments. A better understanding of the impact of these fungi on human health and activities is clearly based on the improvement of our knowledge of the structural aspects and biological properties of their secondary metabolites, which are reviewed in the present paper.


Asunto(s)
Productos Biológicos/metabolismo , Cladosporium/metabolismo , Humanos
10.
ScientificWorldJournal ; 2021: 6641533, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054359

RESUMEN

Crude oil spills as a result of natural disasters or extraction and transportation operations are common nowadays. Oil spills have adverse effects on both aquatic and terrestrial ecosystems and pose a threat to human health. This study have been concerned with studying the capability of six fungal species (Curvularia brachyspora, Penicillium chrysogenum, Scopulariopsis brevicaulis, Cladosporium sphaerospermum, Alternaria alternata, and Stemphylium botryosum) and three fungal consortia (FC), FC1 (P. chrysogenum and C. brachyspora), FC2 (S. brevicaulis and S. botryosum), and FC3 (S. brevicaulis, S. botryosum, and C. sphaerospermum), to remediate petroleum hydrocarbons (PHs). Qualitative and quantitative changes in polyaromatic hydrocarbons (PAHs) and saturated hydrocarbons (SH) mixtures and the patterns of PHs degradation have been examined using HPLC and GC. Studying the GC chromatogram of C. sphaerospermum revealed severe degradation of SHs exhibited by this species, and the normal-paraffin and isoparaffin degradation percentage have been valued 97.19% and 98.88%, respectively. A. alternata has shown the highest significant (at P ˂ 0.05) PAH degradation percent reaching 72.07%; followed by P. chrysogenum, 59.51%. HPLC data have revealed that high-molecular-weight PAH percent/total PAHs decreased significantly from 98.94% in control samples to 68.78% in samples treated with A. alternata. FC1 and FC2 consortia have exhibited the highest significant PH deterioration abilities than did the individual isolates, indicating that these fungal consortia exhibited positive synergistic effects. The study supports the critical idea of the potential PAH and SH biodegradation as a more ecologically acceptable alternative to their chemical degradation.


Asunto(s)
Alternaria/metabolismo , Ascomicetos/metabolismo , Biodegradación Ambiental , Cladosporium/metabolismo , Curvularia/metabolismo , Penicillium chrysogenum/metabolismo , Petróleo/metabolismo , Scopulariopsis/metabolismo , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Hidrocarburos/metabolismo , Contaminación por Petróleo , Hidrocarburos Policíclicos Aromáticos/metabolismo
11.
Sci Adv ; 7(19)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33962956

RESUMEN

Effectors are small, secreted proteins that promote pathogen virulence. Although key to microbial infections, unlocking the intrinsic function of effectors remains a challenge. We have previously shown that members of the fungal Avr4 effector family use a carbohydrate-binding module of family 14 (CBM14) to bind chitin in fungal cell walls and protect them from host chitinases during infection. Here, we show that gene duplication in the Avr4 family produced an Avr4-2 paralog with a previously unknown effector function. Specifically, we functionally characterize PfAvr4-2, a paralog of PfAvr4 in the tomato pathogen Pseudocercospora fuligena, and show that although it contains a CBM14 domain, it does not bind chitin or protect fungi against chitinases. Instead, PfAvr4-2 interacts with highly de-esterified pectin in the plant's middle lamellae or primary cell walls and interferes with Ca2+-mediated cross-linking at cell-cell junction zones, thus loosening the plant cell wall structure and synergizing the activity of pathogen secreted endo-polygalacturonases.


Asunto(s)
Quitinasas , Cladosporium , Pared Celular , Quitina/química , Cladosporium/genética , Cladosporium/metabolismo , Proteínas Fúngicas/metabolismo , Pectinas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
12.
Int J Food Microbiol ; 344: 109111, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33676331

RESUMEN

Currants are prone to contamination by ochratoxin during cultivation, processing and storage conditions. Saccharomyces cerevisiae is considered to be among the main species of grape yeast flora able to control antagonistic fungi. In this study, the potential of S. cerevisiae Y33 was investigated to inhibit the growth of several fungal species indigenous to the microbiota of grapes. Moreover, the efficacy of this yeast species was investigated to inhibit OTA by toxin producing fungi both in vitro and in situ. For this purpose thirty-five different fungal species, belonging to the genera Aspergillus, Penicillium, Cladosporium, Fusarium and Alternaria interacted in vitro with S. cerevisiae on Malt Extract agar plates, stored at 25 °C for 14 days. Results showed that the highest OTA producer A. carbonarius F71 was inhibited more than 99% from day 7, in contrast to A. niger strains that presented enhanced OTA production at day 14 due to interaction with S. cerevisiae Y33. Additionally, the antifungal potential of the selected yeast was also studied in situ on currants subjected to different treatments and stored at 25 °C for 28 days. Microbiological analysis was undertaken for the enumeration of the bacterial and fungal flora, together with OTA determination at 7 and 21 days. To quantify A. carbonarius on all treated currant samples, molecular analysis with Real Time PCR was employed. A standard curve was prepared with A. carbonarius DNA. The efficiency of the curve was estimated to 10.416, the slope to -3.312 and the range of haploid genome that could be estimated was from 1.05 to 105∙105. The amount of A. carbonarius DNA in all treated currants samples, where the fungus was positively detected, ranged from as low as 0.08 to 562 ng DNA/g currants. The antifungal activity of S. cerevisiae Y33 was observed in all studied cases, causing inhibition of fungal growth and OTA production.


Asunto(s)
Antibiosis/fisiología , Ocratoxinas/biosíntesis , Ribes/microbiología , Saccharomyces cerevisiae/patogenicidad , Alternaria/crecimiento & desarrollo , Alternaria/metabolismo , Antifúngicos/metabolismo , Aspergillus/crecimiento & desarrollo , Aspergillus/metabolismo , Cladosporium/crecimiento & desarrollo , Cladosporium/metabolismo , Frutas/microbiología , Fusarium/crecimiento & desarrollo , Fusarium/metabolismo , Penicillium/crecimiento & desarrollo , Penicillium/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/genética , Levadura Seca
13.
Arch Microbiol ; 203(5): 2139-2145, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33611632

RESUMEN

This study shows that some species of fungi are affected by the magnetic field, which should be taken into account in studies of airborne fungal and air quality. The aim of this paper was to evaluate the effect of the oscillating magnetic field (OMF) on the behavior of colonies of three fungi genus growth in different culture mediums. The stains were: Aspergillus niger, Cladosporium cladosporioides and Penicillium citrinum and were inoculated in 90 mm Petri dishes with: Malt Extract Agar (MEA), Sabouraud Dextrose Agar (SDA) and Czapek-Dox Agar (CDA). Was applied them OMF of 60 Hz/220 V between 1 and 5 mT during 2 h and then they were incubated 7 days to 28 °C. Colonies size (mm) every day was measured. Stimulation in the colonies size of all experimental conditions was showed; the greatest size of A. niger in MEA was notorious. It was demonstrated by statist analyze that only colonies size with 1 mT was significance respect to the control. The effect of OMF on the cellular metabolism was evidenced, as well as: less exudation and major pigmentation of P. citrinum in MEA; variation of pigmentation of A. niger and C. cladosporioides in CDA and increase of conidiogenesis of A. niger in SDA. Was concluded that the applied OMF had a major influence on size colony and mycelia pigmentation of A. niger that C. cladosporioides and P. citrinum, independently of the nutritional state according to the culture medium employed in this study.


Asunto(s)
Microbiología del Aire , Hongos/efectos de la radiación , Campos Magnéticos , Aspergillus/metabolismo , Cladosporium/metabolismo , Micelio/efectos de la radiación , Penicillium/metabolismo , Pigmentación/efectos de la radiación
14.
Sci Rep ; 11(1): 909, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441700

RESUMEN

Cladosporium cladosporioides causes asthma and superficial and deep infections, mostly in immunodeficient individuals and animals. This study aimed to investigate whether C. cladosporioides spores can enter the lungs through pulmonary circulation and influence pulmonary immune response. We intravenously injected mice with C. cladosporioides spore suspension and conducted several assays on the lungs. Pulmonary hemorrhage symptoms and congestion were most severe on days 1, 2, and 3 post-inoculation (PI). Extensive inflammatory cell infiltration occurred throughout the period of infection. More spores and hyphae colonizing the lungs were detected on days 1, 2, and 3 PI, and fewer spores and hyphae were observed within 21 d of infection. Numerous macrophages, dendritic cells, and neutrophils were observed on day 5 PI, along with upregulation of CD54, an intercellular adhesion molecule. Th1 and Th2 cells increased after infection; specifically, Th2 cells increased considerably on day 5 PI. These results suggest that days 2 and 5 PI represent the inflammatory peak in the lungs and that the Th2 and Th1 signaling pathways are potentially involved in pulmonary immune responses. In conclusion, the further adaptive immune responses played important roles in establishing effective pulmonary immunity against C. cladosporioides systemic infections based on innate immune responses.


Asunto(s)
Inmunidad Adaptativa/inmunología , Cladosporium/inmunología , Enfermedades Pulmonares Fúngicas/inmunología , Animales , Asma/inmunología , Cladosporium/metabolismo , Cladosporium/patogenicidad , Modelos Animales de Enfermedad , Femenino , Inmunidad Innata/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neumonía/inmunología , Esporas Fúngicas/inmunología , Esporas Fúngicas/patogenicidad , Células Th2/inmunología
15.
Nat Commun ; 11(1): 4393, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879321

RESUMEN

Rcr3 is a secreted protease of tomato that is targeted by fungal effector Avr2, a secreted protease inhibitor of the fungal pathogen Cladosporium fulvum. The Avr2-Rcr3 complex is recognized by receptor-like protein Cf-2, triggering hypersensitive cell death (HR) and disease resistance. Avr2 also targets Rcr3 paralog Pip1, which is not required for Avr2 recognition but contributes to basal resistance. Thus, Rcr3 acts as a guarded decoy in this interaction, trapping the fungus into a recognition event. Here we show that Rcr3 evolved > 50 million years ago (Mya), whereas Cf-2 evolved <6Mya by co-opting the pre-existing Rcr3 in the Solanum genus. Ancient Rcr3 homologs present in tomato, potato, eggplants, pepper, petunia and tobacco can be inhibited by Avr2 with the exception of tobacco Rcr3. Four variant residues in Rcr3 promote Avr2 inhibition, but the Rcr3 that co-evolved with Cf-2 lacks three of these residues, indicating that the Rcr3 co-receptor is suboptimal for Avr2 binding. Pepper Rcr3 triggers HR with Cf-2 and Avr2 when engineered for enhanced inhibition by Avr2. Nicotiana benthamiana (Nb) is a natural null mutant carrying Rcr3 and Pip1 alleles with deleterious frame-shift mutations. Resurrected NbRcr3 and NbPip1 alleles were active proteases and further NbRcr3 engineering facilitated Avr2 inhibition, uncoupled from HR signalling. The evolution of a receptor co-opting a conserved pathogen target contrasts with other indirect pathogen recognition mechanisms.


Asunto(s)
Cladosporium , Resistencia a la Enfermedad/genética , Péptido Hidrolasas/genética , Inmunidad de la Planta/genética , Solanum , Cladosporium/genética , Cladosporium/metabolismo , Cladosporium/patogenicidad , Evolución Molecular , Proteínas Fúngicas/metabolismo , Genes de Plantas , Interacciones Huésped-Parásitos , Péptido Hidrolasas/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inhibidores de Proteasas/metabolismo , Solanum/genética , Solanum/metabolismo , Solanum/microbiología , /metabolismo , /microbiología
16.
Chem Biodivers ; 17(6): e2000158, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32259395

RESUMEN

A unique polyketide cladosporactone A along with eight known compounds were isolated from the deep-sea-derived Cladosporium cladosporioides. The structure of cladosporactone A was established by spectroscopic analyses, and the absolute configuration was clarified by the theoretical ECD calculation. Cladosporactone A is the first member of polyketide with the 7-methylisochromen-3-one skeleton.


Asunto(s)
Cladosporium/química , Policétidos/química , Agua de Mar/microbiología , Dicroismo Circular , Cladosporium/aislamiento & purificación , Cladosporium/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Conformación Molecular , Policétidos/aislamiento & purificación
17.
Mar Biotechnol (NY) ; 22(2): 317-330, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32124098

RESUMEN

The organic synthesis has been driven by the need of sustainable processes, which also requires efficiency and cost-effectiveness. In this work, we described the synthesis of nine Knoevenagel adducts between cyanoacetamide and aromatic aldehydes ((E)-2-cyano-3-(phenyl)acrylamide derivatives), employing triethylamine as catalyst under microwave irradiation in 30 min with excellent yields (93-99% yield). Then, these adducts were employed in the C-C double bond bioreduction by the marine-derived fungus Cladosporium sp. CBMAI 1237 for obtention of 2-cyano-3-phenylpropanamide derivatives in mild conditions and short reaction time for a whole-cells reduction (phosphate buffer pH 7.0, 32 °C, 130 rpm, 8 h) with good yields (48-90%). It is important to emphasize that the experimental conditions, especially the reaction time, should be carefully evaluated for the obtention of high yields. Since a biodegradation process consumed the obtained product in extended periods, probably due to the use of the substrate as carbon and nitrogen source. This approach showed that the use of coupled and greener catalysis methods such as microwave irradiation and biocatalytic reduction, which employs unique biocatalysts like marine-derived fungi, can be an interesting tool for the obtention of organic molecules.


Asunto(s)
Amidas/síntesis química , Biocatálisis , Cladosporium/metabolismo , Microondas , Aldehídos/química , Etilaminas/química , Nitrilos/química
18.
Int J Food Microbiol ; 322: 108585, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32179333

RESUMEN

A total of 20 dried date samples, chosen as representative among those available on the Perugia (Umbria, Central Italy) market, were analyzed for the possible occurrence of fungal species and related contamination by fungal secondary metabolites. Twenty-six isolates, representative of the total mycobiota, were obtained and morphologically identified as belonging to the genera Aspergillus, Penicillium and Cladosporium. Inside each genus, molecular characterization (by partial sequencing of ITS region and/or ß-tubulin and calmodulin regions for Aspergillus and Penicillium isolates or actin region for Cladosporium isolates) and in vitro mycotoxigenic profile characterization (by LC-MS/MS analysis) showed the presence of the following species: A. flavus, A. tubingensis, P. brevicompactum, P. chrysogenum, P. crustosum, P. glabrum, P. solitum, P. venetum, C. cladosporioides, C. limoniforme and C. halotolerans, with A. tubingensis as the prevalent species and P. crustosum, P. solitum, P. venetum and C. limoniforme first reported here on dates. Date packaging and format showed an effect on the incidence of isolated fungi, with the lowest incidence recovered from whole dates and in hermetic bag packaging. These findings can be useful both for dried dates producers and consumers, guiding them towards choices of packaging and format with a lower risk of mycotoxigenic species presence. However, no fungal metabolites were detected in the dried date samples analyzed, which were therefore regarded as safe for human consumption, underlining the absence of correspondence between fungal isolation and mycotoxin contaminations.


Asunto(s)
Microbiología de Alimentos , Alimentos en Conserva/microbiología , Hongos/aislamiento & purificación , Phoeniceae/microbiología , Aspergillus/clasificación , Aspergillus/genética , Aspergillus/aislamiento & purificación , Aspergillus/metabolismo , Cladosporium/clasificación , Cladosporium/genética , Cladosporium/aislamiento & purificación , Cladosporium/metabolismo , Embalaje de Alimentos/métodos , Frutas/microbiología , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Humanos , Italia , Micotoxinas/análisis , Penicillium/clasificación , Penicillium/genética , Penicillium/aislamiento & purificación , Penicillium/metabolismo
19.
Sci Rep ; 9(1): 19492, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862957

RESUMEN

The objective of the paper was to determine the influence of iron(III) ions on the growth and metabolism of fungi commonly occurring in waters: the yeast Rhodotorula mucilaginosa and filamentous fungus Cladosporium herbarum. Cells of R. mucilaginosa were shown to absorb the most iron(III) ions at a concentration of 1 mg/L iron(III) ions. Yeast cells showed a considerable increase in the content of proteins and monosaccharides, as well as biomass growth. At higher concentrations of iron(III) ions, the yeast limited the intake of iron(III) ions, and a decrease in the basic metabolites in cells was observed, as well as an increase in the secretion of such metabolites into the medium. Moreover, the activity of antioxidant enzymes increased in the fungal cells, suggesting that iron(III) ions have a toxic effect. Simultaneously, even at high concentrations of iron(III) ions in the medium, no decrease in the yeast biomass was recorded. It seems therefore that the potentially pathogenic R. mucilaginosa will likely be present in waters moderately contaminated with iron(III) ions. It can be useful as a water quality bioindicator. A considerably higher capacity for the biosorption of iron(III) ions was recorded for the filamentous fungus C. herbarum. Defensive mechanisms were observed for C. herbarum, which were manifested in a substantial increase in the content of proteins and monosaccharides, as well as an increase in the activity of antioxidant enzymes, particularly under the influence of high concentrations of iron(III) ions. Moreover, it was evidenced that in the filamentous fungus, iron(III) ions limited the extracellular secretion of metabolites. These results suggest that the fungus can actively accumulate iron(III) ions and therefore eliminate them from the aquatic environment. It can be useful in water treatment processes, which has a significant impact on water ecology.


Asunto(s)
Cladosporium/metabolismo , Hierro/metabolismo , Rhodotorula/metabolismo , Biomasa , Agua/metabolismo
20.
Respir Med ; 150: 74-80, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30961954

RESUMEN

OBJECTIVE: Some evidences indicate that exposure to molds or their products can be relevant for the loss of asthma control. Thus, we measured the mold burden present inside houses of subjects with asthma, and evaluated its relationship with asthma control. METHODS: Markers of asthma control in adult patients residing in Mexico City were evaluated through questionnaires and spirometry. Dust was collected from the patients' houses and its fungal content was determined by mold specific quantitative PCR (MSQPCR) for 36 fungal species. RESULTS: Forty-two patients with asthma (12 males, 30 females) with a mean age of 45 years (18-76 years) were included in the study. The level of asthma control measured through the Asthma Control Test ranged from 9 to 25 (mean 20.9). The FEV1/FVC ratio fluctuated from 38 to 106 %predicted (mean, 87.4 %predicted). Associations between mold burden and asthma control differed between males and females. Thus, concentrations of some molds, particularly Aspergillus fumigatus, Aureobasidium pullulans, Stachybotrys chartarum, Alternaria alternata, Cladosporium cladosporioides 2, Cladosporium herbarum, and Epicoccum nigrum, were negatively associated with parameters of asthma control in male subjects, but not in female patients. CONCLUSION: Our results showed that potential indoor exposure to some molds is associated with less asthma control in male subjects.


Asunto(s)
Contaminación del Aire Interior/análisis , Asma/microbiología , Polvo/inmunología , Hongos/metabolismo , Adulto , Alternaria/metabolismo , Aspergillus fumigatus/metabolismo , Asma/fisiopatología , Cladosporium/metabolismo , Femenino , Volumen Espiratorio Forzado , Hongos/crecimiento & desarrollo , Vivienda , Humanos , Masculino , México/epidemiología , Persona de Mediana Edad , Espirometría/métodos , Stachybotrys/metabolismo , Evaluación de Síntomas/métodos , Evaluación de Síntomas/estadística & datos numéricos , Capacidad Vital
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...